
Distributed Algorithms for Optimization in Networks

Angelia Nedić

January 27, 2022

Angelia.Nedich@asu.edu



Lecture 1 27th LIDS Student Conference MIT

Distributed (Large-Scale) Optimization Problems:

Sources

I Automatic Control Systems (robot networks)

• Energy Systems

• Envisioned Smart Grids and Smart Cities

I Signal and Image Processing (Image Reconstruction, Pattern Recognition)

I Data Science (Learning from Data)

1



Lecture 1 27th LIDS Student Conference MIT

Machine Learning Problem

I Consider a prototype problem arising in the supervised learning, where a machine (or

neural net) is trained from a large data set.

I The problem typically consists of minimizing some objective cost subject to a large

number of constraints of the following form:

minimize ρ(x)

subject to g(x; yi, zi) ≤ 0, i = 1, . . . ,m, x ∈ Rn, (1)

where p is the number of data points (m� 1), x ∈ Rn is a decision vector (the vector

of weights in neural-nets), and the function ρ(·) is used to promote certain properties

of the solutions, such as sparsity or robustness.

I The function g(x; yi, zi) represents a constraint imposed by the data point (yi, zi) ∈
Rn+1, where yi is a measurement and zi is the label associated with the measurement.

I For example, for linear classifiers, each data constraint is linear, i.e.,

g(x; yi, zi) = 1− zi〈yi, x〉
while the labels zi are binary.

I The difficulty in solving problem (1) lies in the large number m of constraints.

2



Lecture 1 27th LIDS Student Conference MIT

Strategies

I The existing methods developed prior to the emergence of such large problems could

not cope with such a large scale.

I To cope with the large number of constraints, there are two main conceptual approaches

related to problem (1)

• Penalty-Based Reformulation, which essentially replaces problem (1) with an

unconstrained problem obtained by penalizing the constraints to form a new objec-

tive function. The resulting unconstrained problem is not necessarily equivalent

to the original constrained problem (1).

• Sampled-Constraint Approximation, where the problem is either approximated

or addressed directly by sampling the constraints “on-the-go” (within an algorithm).

3



Lecture 1 27th LIDS Student Conference MIT

Penalty-Based Reformulation

I Original constrained problem

minimize ρ(x) subject to g(x; yi, zi) ≤ 0, i = 1, . . . ,m, x ∈ Rn,
I Introducing a loss function `(·) (associated with the quality of data-fitting) and a

regularization parameter r > 0, the problem is re-formulated as an unconstrained

problem:

minimize rρ(x) +
1

m

m∑
i=1

`(x; yi, zi), (2)

where the loss function penalizes the violation of constraints g(x; yi, zi) ≤ 0, i =

1, . . . ,m.
I For example, for linear classifiers, common choices include:

• The logistic regression loss given by `(x; y, z) = log
(
1+ e−z〈x,y〉

)
• The hinge loss `(x; y, z) = max{0,1− z〈x, y〉}.

I By scaling the objective function in (2) with a regularization parameter r > 0, we can

interpret 1/r as the penalty parameter.
I The resulting penalized problem balances the regularizing function ρ(·) and the average

sum of the loss functions, where the balance is controlled by the parameter r > 0.

4



Lecture 1 27th LIDS Student Conference MIT

Minimizing the Average Sum of Loss-Functions

I We will now consider a general form of the problem in (2):

min
x∈Rn

1

m

m∑
i=1

fi(x), (3)

I There is a vast body of work that offers various gradient methods for solving such an

unconstrained problems with an additive-type objective function.
I The random incremental gradient method, often referred to as stochastic gradient

descent in some of the machine learning community, has been the most successful due

to its simplicity, and it has a long tradition starting with Kibardin 1980∗ (see Bertsekas

2012† for an in-depth survey on these methods).
I A renewed interest driven by a desire to improve its convergence rate, which can

be unfavorable due to the stochastic errors induced by the sampling of the objective

function gradients.
I The development of several efficient variance-reduction methods, such as stochastic

variance reduced gradient (SVRG), SAG, SAGA, Katyusha.
∗V. M. Kibardin Decomposition into Functions in the Minimization Problem, Automation and Remote Control, 40 (9)

1311–1323, 1980
†D. P. Bertsekas Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey, in a book

on Optimization for Machine Learning, pp. 85–119, MIT Press, Cambridge, MA, 2012

5



Lecture 1 27th LIDS Student Conference MIT

Distributed but Centralized Computational Architecture

I The existing the random incremental gradient methods (aka stochastic gradient de-

scent) can be distributed within a master-slave architecture

Solving minx∈Rn
1
m

∑m
i=1 fi(x) in a master-slave architecture with a master node and m workers. The master node

Master	
node

1 2 i m

f2(x)f1(x) fi(x) fm(x)

x

x x
x

is responsible for maintaining the decision vector x, Each worker i is responsible for processing the function fi given the

state x (typically computes the gradient ∇f(x)).

I Such an architecture is not fully distributed (i.e., decentralized) as it requires a

central entity to coordinate the computations of the slaves (workers).

I This architecture inherently requires the knowledge of the number m of workers.

I Communication with the central entity (master node) is intense when m is large.

I Fast methods (SVRG, SAG, SAGA, etc.) also require master-node with memory of the

size m× n to store past gradients for each fi, i = 1, . . . ,m

6



Lecture 1 27th LIDS Student Conference MIT

Distributed & Decentralized Computational Architecture

I The information processing (iterate updates) of a cyclic incremental gradient method

can be interpreted as computations in a cyclic directed graph (see D.P. Bertsekas’

webpage for papers on incremental methods)

Solving minx∈Rn
1
m

∑m
i=1 fi(x) with a cyclic incremental method. Each iteration consists of an update of x along a

1

2

i

m f2(x)

f1(x)

fi(x)

fm(x)

x

x

x

m-1

fm-1(x)

x

x

x

x

cyclic directed graph over the nodes 1,2, . . . ,m. A node i receives x from its up-stream neighbor i− 1, updates x based

on ∇fi(x), and sends the updated x to its down-stream neighbor i+1.

I Information processing (algorithm) along such a cycle has two shortcomings:

• Takes long time for a full iteration update when m is large

• Failure of one node, or a link, breaks the computations.

7



Lecture 1 27th LIDS Student Conference MIT

General Distributed & Decentralized Model
We consider a problem

min
x∈Rn

m∑
i=1

fi(x)

in a system consisting of m agents that are

embedded in a communication network.

I Function fi is privately known only to

agent i, not shared with any other agent.

I Agents communicate some limited informa-

tion with their immediate neighbors only

I The problem is to be solved distributedly i.e., without a central entity

I Every agent i has only local knowledge of the graph, i.e., it only knows its neighbors

I No agent knows even the total number m of the agents in the system

I Note: The problems minx∈Rn
∑m

i=1 fi(x) and minx∈Rn
1
m

∑m
i=1 fi(x) are equivalent

in the sense that their sets of optimal solutions coincide

8



Lecture 1 27th LIDS Student Conference MIT

I The lack of central authority is compensated by agent collaboration and communication

• DeGroot consensus model [DeGroot 1974] - also referred to as agreement model

• A variant of this problem, using consensus model, has been studied in the 80’s:

Borkar & Varaya 1982, Tsitsiklis 1984, Tsitsiklis, Bertsekas & Athens 1986,

Bertsekas & Tsitsiklis book

“Parallel and Distributed Computations: Numerical Methods” 1989

I We will discuss distributed gradient methods that employ DeGroot (or Push-sum)

consensus protocols, which utilize:

• Basic graph concepts (Laplacian and their spectral properties)

• Row-stochastic and column stochastic matrices (properties of averaging, conver-

gence) (tools from Nonnegative matrix and Markov Chain theory)

• Optimization theory and techniques (gradient methods)

9



Lecture 1 27th LIDS Student Conference MIT

Graphs

I A graph over m ≥ 2 nodes is denoted by G = ([m], E), where [m] = {1,2, . . . ,m}
and E ⊆ [m]× [m] is the set of edges.

I When a graph G = ([m], E) is undirected (bidirectional), the graph edges are specified

by unordered pairs of distinct nodes {i, j} ∈ E.

I When a graph G = ([m], E) is directed, the graph edges are specified by ordered pair

of distinct nodes (i, j) ∈ E.

I In what follows, graphs will be used to represent the information flow among a set

of m agents (also referred to as nodes) communicating over a network with following

interpretation of the graph edges:

• An undirected edge (or a link) {i, j} indicates that i can receive from and send

information to j, and j can receive from and send the information to i;

• A directed edge (or a link) (i, j) indicates that i can send information to agent j.

I An undirected graph G is connected if there is a path connecting every two distinct

nodes in the graph.

I A directed graph G is strongly connected if there is a directed path connecting each

node to every other node in the graph.

10



Lecture 1 27th LIDS Student Conference MIT

Neighbors in a Graph

I Given an undirected graph G = ([m], E), for each agent i, we let Ni be the set of

neighbors of i,

Ni = {j ∈ [m] | {i, j} ∈ E}

I Given a directed graph G = ([m], E), for each agent i, we identify two sets of

neighbors:

• The set of in-neighbors N in
i of agent i

N in
i = {j ∈ [m] | (j, i) ∈ E}

• The set of out-neighbors Nout
i of agent i

Nout
i = {j ∈ [m] | (i, j) ∈ E}

I We will assume that the graph G always contains self-loops at every node

(meaning that every agent i always has access to its own information)

I Under this assumption we have that i is always in its neighbor set/sets: i.e.,

for all i

11



Lecture 1 27th LIDS Student Conference MIT

DeGroot Consensus/Agreement Model

I Consider a set of m agents where every agent i has a value xi(0) ∈ R (opinion).

I The graph representing who-knows-whom is a strongly connected directed graph

G = ([m], E)

I Agent i chooses positive trust weights wij > 0 for its in-neighbors j ∈ N in
i ;

these weights sum to 1,
∑

j∈N in
i
wij = 1

I Over time, the agents communicate with their neighbors and share their values

Specifically, at each time t, each agent i ∈ [m]

• Receives values xj(t) from its in-neighbors N in
i and

• Sends its own value xi(t) to its out-neighbors Nout
i

1

9

3
4

5

87

6

2

x1(t)

x2(t) x4(t)x3(t)

x5(t)

x6(t)
x6(t)

x6(t)

w61

w62
w63 w64

w65

12



Lecture 1 27th LIDS Student Conference MIT

I The agents obtain no other information based on which they can update their values

I Upon sharing their values, the agents update using the trust weights they have selected,

xi(t+1) =
∑
j∈N in

i

wijxj(t) for all i ∈ [m]

I To compactly write the evolution of opinions, define

wij = 0 for all j /∈ N in
i and for all i ∈ [m]

and let W = [wij]. Define x(t) as the column vector with entries xi(t), i ∈ [m].

Then, we have

x(t+1) =Wx(t) for all t ≥ 0

I Thus, the evolution of x(t) is linear

x(t) =W tx(0) for allt ≥ 0

I The trust matrix W is stochastic, i.e., it is a non-negative matrix and the entries sum

to 1 in each row

W ≥ 0, W1 = 1

where 1 is the m-dimensional vector with all entries equal to 1.

13



Lecture 1 27th LIDS Student Conference MIT

Existence and Characterization of the Limit

I The trust matrix W is compliant with the directed graph G: there is an edge from

j to i if and only if Wij > 0.

I We assume that the graph G is strongly connected

I Analysis using Markov Chain theory

• If we view W as a transition matrix of a homogeneous Markov Chain, then the

chain is ergodic, meaning that

lim
t→∞

W t = 1π′,

where π = [π1, . . . , πm]′ is a positive stochastic vector, i.e., π > 0 and 1′π = 1.

• The vector π is the vector of steady-state distributions of the chain.

• Using this limit in the evolution of x(t), we conclude that

lim
t→∞

x(t) = lim
t→∞

W tx(0) = 1π′x(0)

which implies

lim
t→∞

xi(t) = π′x(0) for all i ∈ [m]

I Thus, agents reach a consensus asymptotically

I The consensus value is π′x(0)

14



Lecture 1 27th LIDS Student Conference MIT

I The convergence rate can be assessed using reversible Markov Chains‡

I Alternatively, use the non-negative matrix theory§

I When the graph G is strongly connected, by Perron-Frobenius Theorem:

• The vector 1 is the unique right-eigenvector of W associated with the eigenvalue

1; all the other eigenvalues of W are less than 1 in modulus

• There exists a unique stochastic vector π > 0 which is the left-eigenvector of W

associated with the eigenvalue 1: π′W = π′, π > 0, 1′π = 1

I The fact that 1 is the largest in modulus of all eigenvalues of W leads to
m∑
i=1

πi(xi(t+1)− 〈π, x(0)〉)2 ≤ ρW
m∑
i=1

πi(xi(t)− 〈π, x(0)〉)2

where ρW ∈ (0,1) is the second largest (in modulus) eigenvalue of W¶

I Recently, using the properties of weighted-averaging and the graph G structure, we

have shown alternative bound that is explicit in terms of the graph structure‖
‡P. Brémaud Gibbs Fields, Monte Carlo Simulation, and Queues New York, USA: Springer-Verlag, 1999
§E. Seneta Nonnegative Matrices, M. Fiedler Special Matrices and their Applications in Numerical Mathematics
¶R. Xin, K. Sahu, U.A. Khan, S. Kar, Distributed stochastic optimization with gradient tracking over strongly-connected

networks, IEEE CDC 2019
‖see https://arxiv.org/abs/2201.02323, Lemma 6

15



Lecture 1 27th LIDS Student Conference MIT

Consensus Protocol: Optimization Point of View
I Reaching agreement means that decisions of all agents are the same: Feasibility

problem of finding an x ∈ Rn such that: xi = x for all i ∈ [m]

I When an underlying information-flow (directed strongly connected) graph

G = ([m], E) is given, the above problem is equivalent to∗∗

xj = xi for all j ∈ N in
i and all i ∈ [m]

I Using a non-negative matrix W (compliant with the graph structure), where agent i

decides on i-row of W translates to the following equivalent problem††

m∑
j=1

wijxj =

 m∑
j=1

wij

xi for all i ∈ [m]

I When the weights sum to 1 (W is row stochastic), the problem is equivalent to
m∑
j=1

wijxj = xi for all i ∈ [m]

I Introducing the matrix x with rows given by x′i, we have following equivalent feasibility

problem: Wx = x
∗∗We can also have an equivalent formulation by using the out-neighbors Nout

i
††Recall that i ∈ N in

i
for all i ∈ [m] (self-loops) and wij > 0 only when j ∈ N in

i

16



Lecture 1 27th LIDS Student Conference MIT

I Consensus protocol solves the above feasibility problem distributedly!
I When the underlying graph G is directed and strongly connected, the solutions

of the preceding feasibility problem are of the form x∗ = a1 for some scalar a ∈ Rm
I Alternative approach: cast the consensus problem as an equivalent feasibility

problem for a system of equations using the Laplacian of the graph or a

weighted-graph Laplacian (the same as above except wii is defined differently)

I Time-Varying Graphs

• At communication round t, the connectivity graph is Gt = ([m], Et)
• The agents use time-varying row-stochastic matrices Wt

[Wt]ij > 0 when j ∈ N in
it (the set of in-neighbors of i in Gt)

• At time t, the agents face feasibility problem Wtx = x

I The consensus method evolution equation (non-stationary process):

x(t+1) =WtWt−1 · · ·W0x(0) for all t ≥ 0

I We can resort to theory on inhomogeneous Markov Chains or backward products of

non-negative matrices

I Assuming that each graph is strongly connected, will this work?

I Yes! The key observation is that each feasibility problem Wtx = x has the same

solution set {α1 | a ∈ R} for all t ≥ 0.

17



Lecture 1 27th LIDS Student Conference MIT

Using DeGroot Consensus In Distributed Optimization

We consider our problem

min
x∈Rn

m∑
i=1

fi(x)

in a system consisting of m agents that are

embedded in a communication network.

I Function fi(·) is privately known only to

agent i.

I Agents communicate some limited informa-

tion with their immediate neighbors only

I Agents do not share their functions fi(·)’s.

I The problem is to be solved distributedly i.e., without a central entity

I The lack of central authority is compensated by using DeGroot consensus model to

act as a virtual coordinator.

I Lets assume that the underlying graph G = ([m], E) is undirected and connected

18



Lecture 1 27th LIDS Student Conference MIT

Consensus-Based Method for Optimization
I The agents communicate over a graph, and Ni is the set of neighbors of agent i

I At time t, every agent i sends xi(t) to its neighbors j ∈ Ni, and receives xj(t) from

them; then, every agent updates (AN and A. Ozdaglar 2009)

xi(t+1) =
m∑
j=1

wijxj(t)︸ ︷︷ ︸
consensus

−αt∇fi(xi(t)) where αt > 0 is a stepsize

I It can be viewed as an extension of the DeGroot model where agents have additional

side information that guides their consensus point

I Assuming that the problem has a solution and some other conditions, each agent

decision xi(t) converges to a common optimal solution x∗ of the system problem,

lim
t→∞

xi(t) = x∗ for all i,

where x∗ is a minimizer of
∑m

j=1 fj(x) over x ∈ Rn.

19



Lecture 1 27th LIDS Student Conference MIT

I The method can work correctly as long as: every agent is equally influential

I Recall that DeGroot protocol leads to consensus vector π′x(0) where π > 0, π′W = π′

I The analysis of the optimization reveals that the agents will solve the problem

minx∈Rn
∑m

i=1 πifi(x)

I Thus, to control the agent influence vector π, the trust matrix W is often assumed to

be doubly stochastic resulting in equal agent influence, πi =
1
m

for all i.

I Such a matrix can be constructed using Metropolis-Hastings weights

wij =


1

1+max{di,dj}
if {i, j} ∈ E, j 6= i

1−
∑

j∈Ni,i 6=j
wij if j = i

0 otherwise

where di is the degree of the node i in the graph G (not counting the self-loop).

Extends to time-varying case: L. Xiao, S. Boyd, S. Lall, Distributed Average Consensus

with Time-Varying Metropolis Weights, 2006

I There are other approaches that similarly require extra information exchange at each

round to create a symmetric row-stochastic matrix Wt (AN, A. Ozdaglar, Distributed

subgradient methods for multi-agent optimization, 2009)

I It works as long as the graphs are undirected

20



Lecture 1 27th LIDS Student Conference MIT

Eliminating Influential Bias: Alternative Consensus
I The algorithm cannot be efficiently implemented in directed time-varying

graphs, i.e., the construction of doubly-stochastic W in a directed graph is time

consuming: Gharesifard and Cortés, ”Distributed strategies for generating weight-

balanced and doubly stochastic digraphs,” European Journal of Control, 18 (6),

539-557, 2012

I An alternative via push-sum algorithm for consensus:

D. Kempe, A. Dobra, and J. Gehrke Gossip-based computation of aggregate informa-

tion, In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer

Science, pages 482–491, 2003

F. Benezit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli Weighted gossip:

distributed averaging using non-doubly stochastic matrices, In Proceedings of the 2010

IEEE International Symposium on Information Theory, 2010

21



Lecture 1 27th LIDS Student Conference MIT

Push-sum and Optimization methods

I Dominguez-Garcia and Hadjicostis. Distributed strategies for average consensus in

directed graphs. In Proceedings of the IEEE Conference on Decision and Control, Dec

2011.

I Hadjicostis, Dominguez-Garcia, and Vaidya, ”Resilient Average Consensus in the

Presence of Heterogeneous Packet Dropping Links” CDC, 2012

I Tsianos and Rabbat. Distributed consensus and optimization under communication

delays. In Proc. of Allerton Conference on Communication, Control, and Computing,

2011.

I Tsianos, Lawlor, and Rabbat. Consensus-based distributed optimization: Practical

issues and applications in large-scale machine learning. In Proceedings of the 50th

Allerton Conference on Communication, Control, and Computing, 2012.

I Tsianos, Lawlor, and Rabbat. Push-sum distributed dual averaging for convex opti-

mization. In Proceedings of the IEEE Conference on Decision and Control, 2012.

I Tsianos. The role of the Network in Distributed Optimization Algorithms: Conver-

gence Rates, Scalability, Communication / Computation Tradeoffs and Communication

Delays. PhD thesis, McGill University, Dept. of Electrical and Computer Engineering,

2013.

22



Lecture 1 27th LIDS Student Conference MIT

Push-sum: Column Stochastic Matrix

I Given a directed and strongly connected graph G = ([m], E), let C be a matrix

compatible with the graph

Cij > 0 when (j, i) ∈ E, Cij = 0 when (j, i) 6∈ E

I Assume that C has positive diagonal entries

I Also, let C be a column-stochastic matrix

1′C = 1′

I Then limt→∞Ct = φ1′ where φ is a stochastic vector with φi > 0 for all i

I Consider a process

x(t) = Cx(t− 1) for t ≥ 1

with an arbitrary x(0) ∈ Rn

23



Lecture 1 27th LIDS Student Conference MIT

I Then

lim
t→∞

x(t) = lim
t→∞

Ctx(0) = φ1′x(0) = 〈1, x(0)〉φ

I Repeating this process with a different initial point y(0), we obtain

y(t) = Cy(t− 1) for t ≥ 1

lim
t→∞

y(t) = 〈1, y(0)〉φ

I Look at the coordinate-wise ratio

zi(t) =
xi(t)

yi(t)
, lim

t→∞
zi(t) =

〈1, x(0)〉φi
〈1, y(0)〉φi

=
〈1, x(0)〉
〈1, y(0)〉

I If we want

lim
t→∞

zi(t) =
1

m
〈1, x(0)〉

it can be done by choosing the initial values yi(0) = 1 for all i ∈ [m]

24



Lecture 1 27th LIDS Student Conference MIT

Push-sum Protocol Illustration

9

4

8
7

6

2

C76 x6(t)
C76 y6(t)

C86 x6(t)
C86 y6(t) C96 x6(t)

C96 y6(t)

C66 y6(t)
C66 x6(t)

C62 y2(t)
C62 x2(t) C64 x4(t)

C64 y4(t)

I Agent i decides on the values Cji for its

out-neighbors j ∈ Nout
i (see the plot)

and sends Cjixi(t) and Cjiyi(t) (the ith

column of C sums to 1)

I Agent i receives such values from its in-

neighbors and updates:

xi(t+1) =
∑

j∈N in
i
∪{i}

Cijxj(t),

yi(t+1) =
∑

j∈N in
i
∪{i}

Cijyj(t)

zi(t+1) =
xi(t+1)

yi(t+1)

I The x-variables can be vectors, while y-variables are always scalars

25



Lecture 1 27th LIDS Student Conference MIT

Optimization

I The gradient-push method can be used for minimizing
∑m

i=1 fi(x) over x ∈ Rn

I Every node i maintains vectors xi(t), wi(t) in Rn, and an auxiliary scalar variable

yi(t), initialized with yi(0) = 1 for all i.

I At tome t+1:

• Communication: Each node j sends C`jxj(t), C`jyj(t) to out-neighbors ` ∈ Nout
j

• Computation: Upon receiving these quantities, every node updates:

wi(t+1) =
∑

j∈N in
i

(t)∪{i}

Cijxj(t)

yi(t+1) =
∑

j∈N in
i

(t)∪{i}

Cijyj(t),

zi(t+1) =
wi(t+1)

yi(t+1)
,

xi(t+1) = wi(t+1)− α(t+1)∇fi(zi(t+1)), (4)

26



Lecture 1 27th LIDS Student Conference MIT

I The method is initiated with an arbitrary xi(0) and yi(0) = 1 for all i.

The stepsize α(t+ 1) > 0 satisfies the following decay conditions
∑∞

t=1 α(t) = ∞
and

∑∞
t=1 α

2(t) <∞

I Under this stepsize (and B-uniform strong connectivity), the algorithm produces the

iterates that converge to a consensual minimizer of
∑m

i=1 fi(z) over z ∈ Rn.

• Convergence rate is of the order of O(1/
√
t) for convex functions and O(1/t)

for strongly convex functions (AN and Olshevsky Distributed Optimization over

Time-varying Directed Graphs IEEE TAC, 2015; AN and Olshevsky Stochastic

Gradient-Push for Strongly Convex Functions on Time-Varying Directed Graphs

2017 Tatarenko and Touri 2015 –Non-Convex Distributed Optimization)

• For the protocol to work, every agent must know its out-neighbors - may not be

realistic in time-varying case

• Numerical instabilities may occur when yi(t) is too small

I Neither De-Groot nor Push-sum based gradient methods can achieve geometric

(linear) convergence rate!

27



Lecture 1 27th LIDS Student Conference MIT

Achieving Geometric Rate: Gradient Tracking
I Lets get back to undirected graph G = ([m], E)

I In weighted-average consensus-based distributed method, the agents were selfish

(applies to the push-sum-based method as well)

xi(t+1) =
m∑
j=1

wijxj(t)︸ ︷︷ ︸
collaborative

−α∇fi(xi(t))︸ ︷︷ ︸
selfish

where we use a fixed stepsize

I In the models with gradient tracking, the agents are “aware” that there is a system

objective and they collaborate on both the decisions and the directions

I Basic Idea: In DeGroot consensus model, with W doubly stochastic agent i iterate

xi(t+1) =
∑m

j=1wijxj(t) tracks the average of the agents’ iterates xj(t), j ∈ [m]

I The iterate
∑m

j=1wijxj(t) is sufficient to properly track the averages (1/m)
∑m

j=1 xj(t)

since the agent use no additional information (no other inputs in the system)

28



Lecture 1 27th LIDS Student Conference MIT

I Apply the same idea to gradients: DIGing – Distributed Inexact Gradient track-ing

Each agent uses an estimate gi(t) to track the gradient averages of all the agents

xi(t+1) =
m∑
j=1

wijxj(t)− αgi(t)

gi(t+1) =
m∑
j=1

wijgj(t) +∇fi(xi(t+1))−∇fi(xi(t))︸ ︷︷ ︸
innovation/new input

I Agents exchange both decision estimates xj(t) and the gradient estimates gj(t) with

their neighbors

I The updates are reminiscent of ”tracking/filtering”:

predicted state + the innovation term

I The innovation term is needed to ”track gradients” since the gradient difference is a

”new information/new input” to the system from agent i.

I Through the exchange of gi(t) and the consensus step
∑m

j=1wijgj(t), these local

agent inputs (from times prior to t) are eventually spread to all agents in the graph

29



Lecture 1 27th LIDS Student Conference MIT

Gradient-Tracking Literature

I Tracking technique used in (not for gradients)

M. Zhu and S. Mart́ınez, Discrete-Time Dynamic Average Consensus, Automatica,

46 (2010),

I A method using gradient tracking proposed in

J. Xu, S. Zhu, Y. Soh, and L. Xie, Augmented Distributed Gradient Methods for

Multi-Agent Optimization Under Uncoordinated Constant Stepsizes, in Proceedings

of the 54th IEEE Conference on Decision and Control (CDC), 2015, pp. 2055–2060.

I A part of Xu’s thesis work

J. Xu, Augmented Distributed Optimization for Networked Systems, PhD thesis,

Nanyang Technological University, 2016.

I G. Qu and N. Li, Harnessing Smoothness to Accelerate Distributed Optimization,

IEEE Transactions on Control of Network Systems 5 (3) 1245–1260, 2018.

30



Lecture 1 27th LIDS Student Conference MIT

Algorithms NEXT and SONATA

I NEXT by Lorenzo and Scutari - considers general non-convex (objective) problems and

a class of algorithms

P. Di Lorenzo and G. Scutari Distributed nonconvex optimization over networks, in

IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive

Processing (CAMSAP), 2015, pp. 229–232.

P. Di Lorenzo and G. Scutari, NEXT: In-Network Nonconvex Optimization, IEEE

Transactions on Signal and Information Processing over Networks, 2016.

P. Di Lorenzo and G. Scutari Distributed nonconvex optimization over time-varying

networks, in IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2016, pp. 4124–4128.

I SONATA and its asynchronous variants; convex and nonconvex problems

Y.Sun, G. Scutari, D.Palomar Distributed Nonconvex Multiagent Optimization Over

Time-Varying Networks https://arxiv.org/abs/1607.00249, 2016

Y. Tian, Y. Sun, B. Du, G. Scutari ASY-SONATA: Achieving Geometric Convergence

for Distributed Asynchronous Optimization Allerton Conference on Communication,

31



Lecture 1 27th LIDS Student Conference MIT

Control, and Computing (Allerton) 2018

Y. Sun, A. Daneshmand, G. Scutari Convergence Rate of Distributed Optimization

Algorithms Based on Gradient Tracking https://arxiv.org/abs/1905.02637, 2019

I Our motivation was to have a distributed algorithm with a geometric convergence rate

‖xi(t)− x∗‖ ≤ qtM, for some M > 0, q ∈ (0,1), and for all agents i ∈ [m].

I It was developed in: A.N., A. Olshevsky and W. Shi, Achieving Linear Convergence

For Distributed Optimization Over Deterministic Time-Varying Graphs,” SIAM Journal

on Optimization 27 (4) 2597–2633, 2017

I Works for undirected graphs :(

32



Lecture 1 27th LIDS Student Conference MIT

Push-Pull Method‡‡

I Works on both undirected and directed graphs, but static i.e., G = ([m], E).

I It is a variant of DIGing that uses different matrices for mixing the decisions and the

directions

I Exchange: (from an agent’s perspective

• (Pull) Every agent i receives xj(k)− αgj(k) from its in-neighbors j ∈ N in
i

• (Push) Every agent i sends C`igi(k) to all its out-neighbors ` ∈ Nout
i

I Update: Every agent i updates its decision x and direction g as follows

xi(k+1) =
∑m

j=1Rij (xj(k)− αgj(k)) ;
gi(k+1) =

∑m
j=1Cijgj(k) +∇fi(xi(k+1))−∇fi(xi(k)).

The matrix R is row-stochastic, while C is a column stochastic!!!

rij = 0 if j /∈ N in
i and cij = 0 if j /∈ N out

i .

The method is initialized with arbitrary xi(0) ∈ Rn and gi(0) = ∇fi(xi(0)) for all i.

The stepsize α can be agent dependent.
‡‡S. Pu, W. Shi, J. Xu, A. N. “Push-Pull Gradient Methods for Distributed Optimization in Networks,” IEEE TAC 2021

33



Lecture 1 27th LIDS Student Conference MIT

Related Work

I S. Pu, W. Shi, J. Xu, and A. Nedić, A push-pull gradient method for distributed

optimization in networks, Proceedings of the 54th IEEE Conference on Decision and

Control (CDC), 2018; journal version on arxiv: https://arxiv.org/abs/1810.06653

I C. Xi, V. S. Mai, R. Xin, E. H. Abed, and U. A. Khan, Linear convergence in

optimization over directed graphs with row-stochastic matrices, IEEE Transactions

on Automatic Control, 2018.

I R. Xin, C. Xi, and U. A. Khan, Frost–fast row-stochastic optimization with

uncoordinated step-sizes, EURASIP Journal on Advances in Signal Processing, 2019.

I R. Xin and U. A. Khan, A linear algorithm for optimization over directed graphs

with geometric convergence, arXiv preprint arXiv:1803.02503, 2018; IEEE Control

Systems Letters 2 (3) 315 – 320, 2018.

I The method has been recently extended to time-varying graphs: F. Saadatniaki, R.

Xin, and U. A. Khan, ”Decentralized optimization over time-varying directed graphs

with row and column-stochastic matrices,” IEEE Transactions on Automatic Control,

2020.

34



Lecture 1 27th LIDS Student Conference MIT

Landscape

I Fast distributed gradient methods are developed that can match the best performance

of centralized gradient methods

I New directions

• Nonconvex problems (T. Tatarenko & B. Touri 2017, Gesualdo Scutari’s group at

Purdue, Khan’s group at Tufts U)

• Asynchronous implementations (S. Pu, Scutari’s group)

• Impact of network topology (N. Neglia at INRIA, A. Olshevsky at BU)

• Impact of delays (M. Johansson at KTH, M.G. Rabbat at Facebook/McGill)

• Privacy (Y. Wang at Clemson University)

• Presence of malicious agents (S. Sundaram, N. Vaidya, A. Scaglione, W.U. Bajwa,

S. Gil, A. Goldsmith, AN)

35


